Review for quiz 2

Transfer functions

- Ratio of output quantity (V or I) to input quantity (V or I source) in sdomain: $\mathrm{H}(\mathrm{s})$
- If input is $\mathrm{G}(\mathrm{s})$, then output is $\mathrm{F}(\mathrm{s})=\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ (multiplication)
- ILT of $\mathrm{H}(\mathrm{s})$ is impulse response $\mathrm{h}(\mathrm{t})$.
- If the input is $\mathrm{g}(\mathrm{t})$, then the output is $\mathrm{f}(\mathrm{t})=\mathrm{h}(\mathrm{t})^{*} \mathrm{~g}(\mathrm{t})$ (convolution).

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}(\mathrm{~s}) / /_{\mathrm{s}}(\mathrm{~s})=4 /(\mathrm{s}+4) \\
& \mathrm{i}_{\mathrm{S}}(\mathrm{t})=\delta(\mathrm{t}), \mathrm{i}_{\mathrm{L}}(\mathrm{t})=?
\end{aligned}
$$

a. $\quad 12 \mathrm{~A}$
b. 6 A
c. $8 e^{-4 t} \mathrm{~A}$
d. $e^{-4 t} \mathrm{~A}$
e. $4 \mathrm{e}^{-4 \mathrm{t}} \mathrm{A}$

Convolution

- Given $\mathrm{g}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$
- $\mathrm{f}=\mathrm{g}^{*} \mathrm{~h}=\int_{-=}^{-} \mathrm{g}(\lambda) \mathrm{h}(\mathrm{t}-\lambda) \mathrm{d} \lambda$
- Properties
- Commutative
- Associative
- Distributive

$H(j \omega)=I_{2} / \mathrm{I}_{\mathrm{s}}, \mathrm{R}=1 \mathrm{k} \Omega$, $\mathrm{L}=0.5 \mathrm{mH}$. The half power angular cut-off
 frequency ω_{c} is
A. $1000 \mathrm{rad} / \mathrm{s}$
B. $1 \mathrm{Mrad} / \mathrm{s}$
C. $0.5 \mathrm{mrad} / \mathrm{s}$
D. $2 \mathrm{Mrad} / \mathrm{s}$
E. $5 \mathrm{krad} / \mathrm{s}$

Frequency responses: low pass, band pass, high pass, band stop first order: high pass or low pass

$$
\begin{aligned}
& H(j \omega)=\frac{R}{R+1 / j \omega C}=\frac{j \omega R C}{j \omega R C+1}=\frac{j \omega / \omega_{c}}{j \omega / \omega_{c}+1} \\
& H(j \omega)=\frac{j \omega L}{R+j \omega L}=\frac{j \omega L / R}{j \omega L / R+1}=\frac{j \omega / \omega_{c}}{j \omega / \omega_{c}+1}
\end{aligned}
$$

$$
\omega_{\mathrm{c}}=1 / \tau=1 / \mathrm{RC} \text { or } 1 / \mathrm{GL}=\mathrm{R} / \mathrm{L}
$$

Figure 14.1.1

$$
H(j \omega)=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}=\frac{1}{j \omega / \omega_{c}+1}
$$

$H(j \omega)=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}=\frac{1}{j \omega / \omega_{c}+1}$

$$
H(j \omega)=\frac{R}{R+j \omega L}=\frac{1}{j \omega L / R+1}=\frac{1}{j \omega / \omega_{c}+1}
$$

$2^{\text {nd }}$ order frequency responses summary
$j \omega->\mathrm{s}, B=\omega_{2}-\omega_{1}, Q=\frac{\omega_{0}}{B}, \omega_{1} \omega_{2}=\omega_{0}{ }^{2}$
$\mathrm{K} \frac{s^{2}}{s^{2}+B s+\omega_{0}^{2}}$ highpass
$K \frac{B s}{s^{2}+E s+\omega_{0}^{2}}$ bandpass
$\mathrm{K} \frac{\omega_{0}^{2}}{s^{2}+B s+\omega_{0}^{2}}$ lowpass
$K \frac{s^{2}+\omega_{0}^{2}}{s^{2}+B s+\omega_{0}^{2}}$ bandstop
$K \frac{s^{2}-E s+w_{0}^{2}}{s^{2}+B s+\omega_{0}^{2}}$ allpass

Series RCL

$$
\begin{aligned}
& \omega_{0}^{2}=\frac{1}{\mathrm{LC}}, B=\frac{R}{L}, \mathrm{Q}=\omega_{0} \frac{L}{R} \\
& \omega_{1,2}=\mp \frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{\mathrm{LC}}}
\end{aligned}
$$

Parallel GCL->RCL

$$
\begin{aligned}
& \omega_{0}^{2}=\frac{1}{\mathrm{LC}}, B=\frac{1}{\mathrm{RC}}, \mathrm{Q}=\omega_{0} \mathrm{RC} \\
& \omega_{1,2}=\mp \frac{1}{2 \mathrm{RC}}+\sqrt{\left(\frac{1}{2 \mathrm{RC}}\right)^{2}+\frac{1}{\mathrm{LC}}}
\end{aligned}
$$

$$
\omega_{1,2}=\mp \frac{B}{2}+\sqrt{\left(\frac{B}{2}\right)^{2}+\omega_{0}^{2}}
$$

ω_{0} is resonance frequency
B is bandwidth.
Q is quality factor.
ω_{1}, ω_{2} are half power frequencies

$$
K \frac{s^{2}}{s^{2}+B s+\omega_{0}^{2}}
$$

This response is
A. Lowpass
B. Highpass
C. Bandpass
D. Bandstop
E. Allpass

$$
\frac{\square}{s^{2}+B s+\omega_{0}^{2}} ; Q=\frac{\omega_{0}}{B} ; \omega_{0}^{2}=\frac{1}{\mathrm{LC}} ; Q=\frac{\omega_{0} L}{R}
$$

This response can be realized by

A. V_{21} / V_{1}
B. V_{31} / V_{1}
C. V_{32} / V_{1}
D. V_{20} / V_{1}
E. V_{30} / V_{1}

Use of dB's

$$
A_{\mathrm{dB}}=20 \log _{10}(|H(s)|)=10 \log _{10}\left(|H(s)|^{2}\right),|H(s)|=10^{A_{\mathrm{dB}} / 20}
$$

TableForm=

signal ratio	power ratio	dB
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0
3.	9.	9.5
5.	25.	14.0
7.07107	50.	17.0
10.	100.	20.0

In cascaded circuits signal and power ratio's are multiplied, dB-values are added.

A signal of 10 V is transmitted from an antenna to a mobile phone, where it is amplified with a factor of 500 . This amplified signal of 1 V is input to the phone's speaker. What is the gain in dB of the signal between the transmitter and the phone?
A. -40 dB
B. -60 dB
C. -74 dB
D. -84 dB
E. -96 dB

- Scaling

- circuit parameter expressions

$$
\begin{aligned}
& R^{\prime}=k_{m} R \\
& L^{\prime}=\frac{k_{m}}{k_{f}} L \\
& C^{\prime}=\frac{c}{k_{m} k_{f}}
\end{aligned}
$$

- frequency expressions

$$
\begin{aligned}
& \omega^{\prime}=k_{f} \omega \\
& B^{\prime}=k_{f} B \\
& \omega_{0}^{\prime}=k_{f} \omega_{0} \\
& Q^{\prime}=\frac{\omega_{0}^{\prime}}{B^{\prime}}=Q \\
& \frac{1}{R^{\prime} C^{\prime}}=\frac{k_{f}}{R C} \\
& \frac{R^{\prime}}{L^{\prime}}=k_{f} \frac{R}{L} \\
& \frac{1}{\sqrt{L^{\prime} C^{\prime}}}=k_{f} \frac{1}{\sqrt{L C}} \\
& j \omega^{\prime} L^{\prime}=j k_{m} \omega \mathrm{~L} \\
& \frac{1}{j \omega^{\prime} C^{\prime}}=\frac{k_{m}}{j \omega C}
\end{aligned}
$$

$$
R^{\prime}=k_{m} R, \quad \omega^{\prime}=k_{f} \omega, \quad L^{\prime}=\frac{k_{m}}{k_{f}} L, \quad \text { and } \quad C^{\prime}=\frac{1}{k_{m} k_{f}} C
$$

For the normalized $R L$ filter having $\omega_{\mathrm{c}}=1$ $\mathrm{rad} / \mathrm{s}, C=1 \mathrm{nF}$, and $R=1 \Omega$, it is required to have $\omega_{\mathrm{c}}=1 \mathrm{krad} / \mathrm{s}$ and $L=10 \mathrm{mH}$. What are the values of k_{f} and k_{m} ?
A. $k_{f}=10^{6}$ and $k_{m}=10^{3}$
B. $\mathrm{k}_{\mathrm{f}}=10^{4}$ and $\mathrm{k}_{\mathrm{m}}=10^{3}$
C. $\mathrm{k}_{\mathrm{f}}=10^{3}$ and $\mathrm{k}_{\mathrm{m}}=10^{3}$
D. $\mathrm{k}_{\mathrm{f}}=10^{3}$ and $\mathrm{k}_{\mathrm{m}}=10^{6}$
E. $\mathrm{k}_{\mathrm{f}}=10^{6}$ and $\mathrm{k}_{\mathrm{m}}=10^{3}$

Active filters

- 1st order
. Low-pass: $K \frac{\omega_{C}}{s+\omega_{C}}$
High-pass: $K \frac{s}{s+\omega_{c}}$

$\omega_{c}=\frac{1}{R_{2} C}, K=\frac{R_{2}}{R_{1}}$

$$
\omega_{c}=\frac{1}{R_{1} C}, K=\frac{R_{2}}{R_{1}}
$$

$C^{\prime}=1 \mu \mathrm{~F}$,
$\omega_{c}^{\prime}=10 \mathrm{krad} / \mathrm{s}$
passband gain $=12$ dB,
What is value of

$$
\begin{aligned}
& R^{\prime}=k_{m} R \\
& L^{\prime}=\frac{k_{m}}{k_{f}} L \\
& C^{\prime}=\frac{c}{k_{m} k_{f}}
\end{aligned}
$$

A. 10Ω
B. 25Ω
C. 100Ω
D. 250Ω
E. $1,000 \Omega$

- Broadband band-pass with cascading LPF and HPF

(a)

$\omega_{\mathrm{C} 2} \gg \omega_{\mathrm{c} 1}$
$\mathrm{H}(\mathrm{s})=K \frac{B s}{s^{2}+B s+\omega_{C}^{2}}, \omega_{\mathrm{C} 1}=\frac{1}{R_{H} C_{H}}, \omega_{\mathrm{C} 2}=\frac{1}{R_{L} C_{L}}, B=\omega_{\mathrm{C} 1}+\omega_{\mathrm{C} 2} \approx \omega_{\mathrm{C} 2} . K=-\frac{R_{f}}{R_{i}}$
- Broadband band-reject with cascading LPF and HPF

(a)

(b)
$\omega_{\mathrm{C} 2} \gg \omega_{\mathrm{C} 1}, \omega_{\mathrm{C} 1}=\frac{1}{R_{L} C_{L}}, \omega_{\mathrm{C} 2}=\frac{1}{R_{H} C_{H}}$
passband gain: $\frac{R_{f}}{R_{i}}$

^ Butterworth filters

$$
\begin{aligned}
& \text { LPF: } H(s)=\frac{1}{B_{n}(s)},|H(s)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{c}}\right)^{2 n}}}=\frac{1}{\sqrt{1+\left(\frac{f}{f_{c}}\right)^{2 n}}} \\
& \text { HPF:H(s)}=\frac{s^{n}}{B_{n}(s)},|H(s)|=\frac{\left(\frac{\omega}{\omega_{c}}\right)^{n}}{\sqrt{1+\left(\frac{\omega}{\omega_{c}}\right)^{2 n}}}=\frac{\left(\frac{f}{f_{c}}\right)^{n}}{\sqrt{1+\left(\frac{f}{f_{c}}\right)^{2 n}}}
\end{aligned}
$$

Table 15.2.2 Normalized Butterworth Polynomials of Order n

\boldsymbol{n}	Factors of Polynomial $\boldsymbol{B}_{\boldsymbol{n}}(\boldsymbol{s})$
1	$(s+1)$
2	$\left(s^{2}+1.414 s+1\right)$, where $\sqrt{2}=1.414$
3	$(s+1)\left(s^{2}+s+1\right)$
4	$\left(s^{2}+0.765 s+1\right)\left(s^{2}+1.848 s+1\right)$
5	$(s+1)\left(s^{2}+0.618 s+1\right)\left(s^{2}+1.618 s+1\right)$
6	$\left(s^{2}+0.518 s+1\right)\left(s^{2}+1.414 s+1\right)\left(s^{2}+1.932 s+1\right)$
7	$(s+1)\left(s^{2}+0.445 s+1\right)\left(s^{2}+1.247 s+1\right)\left(s^{2}+1.802 s+1\right)$
8	$\left(s^{2}+0.390 s+1\right)\left(s^{2}+1.111 s+1\right)\left(s^{2}+1.663 s+1\right)\left(s^{2}+1.962 s+1\right)$

$$
\begin{aligned}
& \frac{\sqrt{10^{-0.1 A_{s}}-1}}{\sqrt{10^{-0.1 A_{p}}-1}}=\frac{\sigma_{s}}{\sigma_{p}} \\
& n=\frac{\log _{10}\left(\frac{\sigma_{s}}{\sigma_{p}}\right)}{\log _{10}\left(\frac{\omega_{s}}{\omega_{p}}\right)}, \text { approximation : } \mathrm{n}=\frac{-0.05 \mathrm{~A}_{\mathrm{s}}}{\log _{10}\left(\frac{\omega_{s}}{\omega_{\mathrm{p}}}\right)}
\end{aligned}
$$

$\begin{aligned} & \text { For } \mathrm{A}_{\mathrm{s}}=- \\ & 20 \mathrm{~dB} \text { at }\end{aligned} \quad \frac{\sqrt{10^{-0.1 A_{s}}-1}}{\sqrt{10^{-0.1 A_{p}}-1}}=\frac{\sigma_{s}}{\sigma_{p}}$, $\omega=2 \omega_{p}$, find required n.

$$
n=\frac{\log _{10}\left(\frac{\sigma_{s}}{\sigma_{p}}\right)}{\log _{10}\left(\frac{\omega_{s}}{\omega_{p}}\right)}, \text { approximation }: \mathrm{n}=\frac{-0.05 \mathrm{~A}_{s}}{\log _{10}\left(\frac{\omega_{s}}{\omega_{\mathrm{p}}}\right)}
$$

A. 1
B. 2
C. 3
D. 4
E. 5
F. 6

