Review for quiz 2

Transfer functions

- Ratio of output quantity (V or I) to input quantity (V or I source) in sdomain: H(s)
- If input is G(s), then output is F(s)=H(s)G(s) (multiplication)
- ILT of H(s) is impulse response h(t).
- If the input is g(t), then the output is f(t)=h(t)*g(t) (convolution).

 $I_{L}(s)/I_{S}(s)=4/(s+4)$ $i_{S}(t) = \delta(t), i_{L}(t) = ?$

- a. 12 A
- b. 6 A
- c. 8 e^{-4t} A
- d. e^{-4t} A
- e. 4 e^{-4t} A

-1.5^t-1.0 -0.5 0.0 0.5 1.0 1.5

2.0

0.5

1.0 1.5

2.0

-1.0

-1.5 -0.5 0.0

H(j ω)=I₂/I_s, R= 1 k Ω , L=0.5 mH. The half power angular cut-off frequency ω_c is

- A. 1000 rad/s
- B. 1 Mrad/s
- C. 0.5 mrad/s
- D. 2 Mrad/s
- E. 5 krad/s

Frequency responses: low pass, band pass, high pass, band stop first order: high pass or low pass

 $R+1/j\omega C = j\omega RC+1$

 $H(j\omega) = \frac{j\omega L}{R+j\omega L} = \frac{j\omega L/R}{j\omega L/R+1} = \frac{j\omega/\omega_c}{j\omega/\omega_c+1}$

H(jω) =

jωRC

jw/w_c

 $j\omega/\omega_{c}+1$

 $j\omega/\omega_{c}+1$

Figure 14.1.1

2nd order frequency responses summary $j\omega$ ->s, $B = \omega_2 - \omega_1$, $Q = \frac{\omega_0}{R}$, $\omega_1 \omega_2 = \omega_0^2$ $K_{s^2 + B s + \omega_0^2}^{s^2}$ highpass $K \frac{Bs}{s^2 + Bs + \omega_0^2}$ bandpass $\frac{5 \text{ s}}{\text{s}^2 + 5 \text{ s} + 1}$ $\frac{s}{s^2 + s + 1}$ $K \frac{\omega_0^2}{s^2 + B s + \omega_0^2}$ lowpass $K \frac{s^2 + \omega_0^2}{s^2 + B s + \omega_0^2}$ bandstop 0.10 $K \frac{s^2 - Bs + \omega_0^2}{s^2 + Bs + \omega_0^2}$ all pass ω_0 is resonance frequency $\omega_{1,2} = \mp \frac{B}{2} + \sqrt{\left(\frac{B}{2}\right)^2 + \omega_0^2}$ B is bandwidth. Q is quality factor.

 ω_1 , ω_2 are half power frequencies.

 s^2 K $s^2 + Bs + \omega_0^2$

This response is

- A. Lowpass
- B. Highpass
- C. Bandpass
- D. Bandstop
- E. Allpass

This response can be realized by

- A. V_{21}/V_1
- B. V_{31}/V_1
- C. V_{32}/V_{1}
- D. V_{20}/V_1
- E. V_{30}/V_{1}

Use of dB's

 $A_{\rm dB} = 20 \log_{10}(|H(s)|) = 10 \log_{10}(|H(s)|^2), |H(s)| = 10^{A_{\rm dB}/20}$

TableForm=

signal ratio	power ratio	dB
0.1	0.01	-20.0
0.141421	0.02	-17.0
0.2	0.04	-14.0
0.3	0.09	-10.5
0.5	0.25	-6.0
0.707107	0.5	-3.0
1.	1.	0.0
1.41421	2.	3.0
2.	4.	6.0
3.	9.	9.5
5.	25.	14.0
7.07107	50.	17.0
10.	100.	20.0

In cascaded circuits signal and power ratio's are multiplied, dB-values are added.

A signal of 10V is transmitted from an antenna to a mobile phone, where it is amplified with a factor of 500. This amplified signal of 1V is input to the phone's speaker. What is the gain in dB of the signal between the transmitter and the phone?

- A. -40dB
- B. -60dB
- C. -74dB
- D. -84dB
- E. -96dB

- Scaling
 - circuit parameter expressions

 $R' = k_m R$ $L' = \frac{k_m}{k_f} L$ $C' = \frac{C}{k_m k_f}$

frequency expressions

 $\omega' = k_f \omega$ $B' = k_f B$ $\omega_0' = k_f \omega_0$ $Q' = \frac{\omega_0'}{B'} = Q$ $\frac{1}{R'C'} = \frac{k_f}{RC}$ $\frac{R'}{L'} = k_f \frac{R}{L}$ $\frac{1}{\sqrt{L'C'}} = k_f \frac{1}{\sqrt{LC}}$ jjω'L'=jjk_mωL $\frac{1}{\mathbf{i}\,\omega'\,C'} = \frac{k_m}{\mathbf{i}\,\omega\,C}$

$$R' = k_m R$$
, $\omega' = k_f \omega$, $L' = \frac{k_m}{k_f} L$, and $C' = \frac{1}{k_m k_f} C$

For the normalized *RL* filter having $\omega_c = 1$ rad/s, *C* = 1 nF, and *R* = 1 Ω , it is required to have $\omega_c = 1$ krad/s and *L* = 10 mH. What are the values of k_f and k_m?

> A. $k_f = 10^6$ and $k_m = 10^3$ B. $k_f = 10^4$ and $k_m = 10^3$ C. $k_f = 10^3$ and $k_m = 10^3$ D. $k_f = 10^3$ and $k_m = 10^6$ E. $k_f = 10^6$ and $k_m = 10^3$

Active filters

$$\omega_{c} = \frac{1}{R_{2}C}, K = \frac{R_{2}}{R_{1}}$$

- C'=1 μ F, ω_c '=10krad/s passband gain =12 dB, What is value of R₁'?
 - Α. 10 Ω
 - Β. 25 Ω
 - C. 100 Ω
 - D. 250 Ω
 - Ε. 1,000 Ω

Broadband band-pass with cascading LPF and HPF

 $\omega_{c2} >> \omega_{c1}$ H(s)= $K \frac{Bs}{s^2 + Bs + \omega_c^2}, \omega_{c1} = \frac{1}{R_H C_H}, \omega_{c2} = \frac{1}{R_L C_L}, B = \omega_{c1} + \omega_{c2} \approx \omega_{c2}. K = -\frac{R_f}{R_i}$ Broadband band-reject with cascading LPF and HPF

Butterworth filters

$$\begin{aligned} \mathsf{LPF} : H(s) &= \frac{1}{B_n(s)}, \mid H(s) \mid = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}} = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^{2n}}} \\ \mathsf{HPF} : H(s) &= \frac{s^n}{B_n(s)}, \mid H(s) \mid = \frac{\left(\frac{\omega}{\omega_c}\right)^n}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}} = \frac{\left(\frac{f}{f_c}\right)^n}{\sqrt{1 + \left(\frac{f}{f_c}\right)^{2n}}} \end{aligned}$$

Table 15.2.2 Normalized Butterworth Polynomials of Order n

n	Factors of Polynomial <i>B_n</i> (<i>s</i>)
1	(s + 1)
2	$(s^2 + 1.414s + 1)$, where $\sqrt{2} = 1.414$
3	$(s + 1)(s^2 + s + 1)$
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$
5	$(s + 1)(s^2 + 0.618s + 1)(s^2 + 1.618s + 1)$
6	$(s^{2} + 0.518s + 1)(s^{2} + 1.414s + 1)(s^{2} + 1.932s + 1)$
7	$(s + 1)(s^{2} + 0.445s + 1)(s^{2} + 1.247s + 1)(s^{2} + 1.802s + 1)$
8	$(s^{2} + 0.390s + 1)(s^{2} + 1.111s + 1)(s^{2} + 1.663s + 1)(s^{2} + 1.962s + 1)$

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5 F. 6

